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Putting vision into context:
Influence of behaviour and context on sensory processing



Classical view of hierarchical feed-forward visual processing



Problems with the hierarchical feed-forward model

Most properties of the environment cannot be directly deduced from 
sensory input

Analyzing complex visual scenes requires a model of the world



Our model of the world shapes our perception
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Our model of the world shapes our perception



Effect of context on perception:
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Integration of sensory and contextual ‘top-down’ signals 
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Outline

• Neuronal signals related to attention and reward 
expectation

• Behavioural relevance & Learning

• Motor signals in sensory cortex

• Bayesian inference and predictive coding 



Modulation of sensory responses by attention

Spatial attention (Top-down)

V1 V2 V4

Buffalo et al 2009



Modulation of sensory responses by attention

Object-based attention

Curve-tracing task

Roelfsema et al 1998



Modulation of sensory responses by reward expectation

Attention or reward expectation?

Adapted curve-tracing task

Stănişor et al, 2013  
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Changes of sensory responses during learning

How do responses to visual stimuli change as they 
become behaviourally relevant to an animal?



Reward zone

Approach

Approach corridor

Grating corridors

Vertical:
rewarded

(drop of soya milk)

Angled (40°):
non-rewarded

Changes of sensory responses during learning

Visual discrimination task in virtual reality

Adil Khan



Trained mouse performing the task

Head-fixed mouse on a cylinder, 
running through a virtual corridor 
(only half of virtual reality visible)



Implantation of a chronic cranial 
window:

Access to the cortex for chronic recordings

Holtmaat et al., 2009  



Two-photon calcium imaging of GCaMP calcium indicators

GCaMP6-expressing neurons in visual cortex (V1)



Trained mouse performing the task
Neurons in visual cortex

expressing GCaMP6 Eye position

In vivo two-photon calcium imaging during the discrimination task

Speed 2.5x



Example cell response to grating corridors:
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Neuronal responses to task-relevant stimuli



Cell 1 

Vertical grating 

Angled grating 

Day 1 Day 2 Day 5 Day 6 

1 
Δ

F/
F

Cell 2 

Cell 3

Cell 4

0.
2 

Δ
F/

F
0.

5 
Δ

F/
F

1 
Δ

F/
F

Neuronal responses to task-relevant stimuli



Neuronal 
population 

performance
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Relationship between behavioural and neuronal performance

Poort, Khan et al., Neuron 2015
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Population performance

The visual cortex gets better at distinguishing the two task-
relevant stimuli, tightly correlated with behavioural performance

Poort, Khan et al., Neuron 2015

Learning may increase the salience of task-relevant visual 
information to better inform behavioural decisions

Neuronal changes with learning

Learning
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Run up
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Angled grating

Switching between visual and olfactory discrimination task



Mice switch between a visual and an olfactory task 
(the same visual stimuli are shown but ignored)
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Neurons in V1 are more selective when visual stimuli are relevant

Poort, Khan et al., Neuron 2015
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Switching between visual and olfactory discrimination task



Modulation of sensory responses by task demands

Task-dependent changes in auditory cortex receptive fields

Fritz et al, 2003  

STRF: spectrotemporal response field

Average change in response field 
passive listening vs during task

Sensory response properties are not fixed 
but reflect behavioural demands!



Motor signals in sensory areas

Electrophysiological recordings in primary visual cortex in head-fixed, running mice

Niell & Styker, 2010  

Visual responses in V1 are increased during locomotion



Motor signals in sensory areas

Circuit-mechanisms of locomotion-related signals in visual cortex?

Lee at al., 2014  

MLR: mesencephalic locomotor region






Motor signals in sensory areas

Circuit-mechanisms of locomotion-related signals in visual cortex?

Pakan at al., 2016  

Complex networks!! -> Modelling

Del Molino at al., 2017  Fu at al., 2014  



Motor signals in sensory areas

Anterior cingulate cortex (+ secondary motor cortex)?

Origin of motor signals?

Leinweber at al., 2017  



Motor signals in sensory areas

Origin of motor signals?
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Imaging activity of thalamic projections in cortical areas



In vivo two-photon calcium imaging of thalamic axons and boutons in layer 1 of V1

15 µmSpeed 5x



• Trained to run through 
virtual corridor 

• Running uncoupled from 
visual flow

Imaging activity of thalamic projections in V1

Visuo-motor ‘task’ 



Visuo-motor signals in thalamic boutons in V1
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Motor signals in sensory areas

Motor signals seem to dominate neuronal activity across the cortical surface

Musall at al., bioRxiv 2018  

Widefield calcium imaging of cortical activity 
during a simple spatial discrimination task



Motor signals in sensory areas

Just gain control? No!

Erisken at al., 2014  

Activity in visual cortex excitatory cells: 
modulated in the dark and carry detailed running speed information

Saleem at al., 2013  



Motor signals in sensory areas

Motor signals as efference copy?



Integration of sensory and contextual ‘top-down’ signals 
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Visual 
discrepancy

During eye or head movements:
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The importance of predictions for sensory perception



Predictive Coding and Bayesian Inference

Kant, Helmholtz,…Friston, Clark, Mumford, Olshausen

Hierarchical Bayesian 
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Predictive coding framework

Keller et al., 2012

Experimental evidence for predictive coding in cortical circuits

A subset of neurons in V1 shows strong mismatch (prediction error) responses

Mismatch responses are 
dependent on experience 
of visuo-motor coupling

Attinger et al., 2017






Predictive coding framework

Potential circuit for mismatch computation in visual cortex

Mismatch response in V1 is weaker when ACC is silenced

Attinger et al., 2017

ACC
Muscimol in Anterior Cingulate Cortex (ACC)

Leinweber et al., 2017



Predictive coding framework

Potential circuit for mismatch computation in visual cortex

Optogenetic manipulation of SOM neurons alters mismatch response 
(consistent with the model but no proof)  

Attinger et al., 2017

Somatostatin (SOM) 
neurons are most 
strongly driven by 
visual flow

ACC
SOM



Predictive coding framework

Spatial prediction and prediction error signals in visual cortex

Some V1 neurons become selective 
to spatial location

Fiser et al., 2016

Some V1 neurons start firing in 
expectation of visual stimuli



Predictive coding framework

Spatial prediction and prediction error signals in visual cortex

Strong response in V1 when an expected visual stimulus is omitted

Fiser et al., 2016



Predictive Coding and Bayesian Inference

Kant, Helmholtz,…Friston, Clark, Mumford, Olshausen
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Feed-back projections

• What is the role of feed-back projections?

• How does feed-back influence the target area? 

• How do cortical areas communicate? How dynamic is this communication? 
What is computed where?
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Feed-back suppresses responses and increases selectivity

Average population response V1
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• Feed-back influence is strongest when visual information is 
most relevant  

• Feed-back increases selectivity in V1 after learning by suppressing 
responses, consistent with the predictive coding framework 
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Summary

• Sensory processing is highly dynamic, allowing animals to flexibly access
and process sensory information according to their current perceptual
and behavioural demands.

• Still unclear to what degree top-down predictions influence or dominate
sensory representations

• Subcortical structures such as the superior colliculus, thalamus,
cerebellum and the basal ganglia might also be important for shaping
cortical information flow and integrating sensory and internal
information

• The sources of different internal signals are mostly still unknown and we
are only starting to determine the circuit mechanisms of how some of
these signals are integrated with sensory information

• “Sensory” cortical areas are strongly influenced by context and
behaviour



Further reading
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